a2 United States Patent

Ganesan

US009197406B2

US 9,197,406 B2
*Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

KEY MANAGEMENT USING QUASI OUT OF
BAND AUTHENTICATION ARCHITECTURE

Applicant: Authentify, Inc., Chicago, IL (US)

Inventor: Ravi Ganesan, West Palm Beach, FL
(US)

Assignee: AUTHENTIFY, INC., Chicago, IL (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 93 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/187,097

Filed: Feb. 21, 2014

Prior Publication Data
US 2014/0173284 Al Jun. 19, 2014

Related U.S. Application Data

Continuation of application No. 13/089,430, filed on
Apr. 19, 2011, now Pat. No. 8,713,325.

Int. Cl.
GO6F 21/00 (2013.01)
Ho4L 9/08 (2006.01)
(Continued)
U.S. CL
CPC HO4L 9/0819 (2013.01); HO4L 9/3281

(2013.01); HO4L 63/0428 (2013.01); HO4L
63/0435 (2013.01); HO4L 63/0442 (2013.01);

(Continued)
Field of Classification Search
CPC HO4L 63/0838; HO4L 2463/082;

HO4L 63/18; HO4L 9/3215
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,223,287 Bl
7,861,077 Bl

4/2001 Douglas et al.
12/2010 Gallagher, IIT

(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP

1445917 A2 11/2004
1919123 Al 5/2008

(Continued)
OTHER PUBLICATIONS

Notification of Reasons for Rejection dated Sep. 3, 2014 in Japanese
Patent Application No. 2014-506447.

(Continued)

Primary Examiner — Michael Chao
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

To provide key management layered on a quasi-out-of-band
authentication system, a security server receives a request for
activation of a user interface window for a particular user
from a network device via a communication channel. It then
transmits an activation PIN to an out of band authentication
system for forwarding to the user’s telephone via a voice or
text message. It next receives the previously transmitted PIN
from the network device via the communication channel, and
authenticates the user based on the received PIN. After
authenticating the user, it establishes a secure, independent,
encrypted communication channel between the user interface
window and the security server on top of the original com-
munication channel. It then generates and transmits to the
user interface window and/or receives from the user interface
window via the secure communication channel, key material
and certificate material for public key and/or symmetric key
cryptography based operations.

20 Claims, 2 Drawing Sheets

175 119 USER DESKTOP
H
QO0BA L-100
WINDOW
BROWSER | L-112
400
{00 oo
165 190
OOBA QOOBA |—-125 WEBSITE
SERVICE SERVER T-——| coosasm

1
1565

US 9,197,406 B2

Page 2
(51) Int.CL 2009/0259588 Al 10/2009 Lindsay
2009/0259848 Al 10/2009 Williams et al.
HO4L 29 //0 6 (2006.01) 2009/0265768 Al 10/2009 Labaton
HO4W 12/04 (2009.01) 2000/0288159 Al 11/2009 Husemann et al.
HO4L 9/32 (2006.01) 2009/0328168 Al 12/2009 Lee
(52) US.CL 2010/0017860 Al 1/2010 Ishida
) 2010/0024022 Al 1/2010 Wells et al.
CPC HO4L 63/062 (2013.01); HO4L 63/0838 5010/0041391 Al 22010 Spivey et al.
(2013.01); HO4L 63/126 (2013.01); HO4L 2010/0111300 Al 52010 Kido etal.
63/18 (2013.01); HO4L 9/3215 (2013.01); HO4L 2010/0235897 Al 9/2010 Mason et al.
63/0823 (2013.01); HO4L 63/0853 (2013.01); %8}8;8%2%3%‘ Al }8%818 freeman et al.
. cott et al.
HO4L 63/1483 (2013.01); HO41L 2463/082 5011/0153496 Al 62011 Royyuru
(2013.01); HO4W 12/04 (2013.01) 2011/0161989 Al 62011 Russo et al.
2011/0208801 Al 8/2011 Thorkelsson et al.
(56) References Cited 2012/0005483 Al 1/2012 Patvarczki et al.
2012/0124651 Al 5/2012 Ganesan et al.
U.S. PATENT DOCUMENTS
FORFIGN PATENT DOCUMENTS
8,136,148 Bl 3/2012 Chayanam et al.

2002/0091928 Al
2002/0095507 Al

7/2002
7/2002

Bouchard et al.
Jerdonek

2003/0028451 Al 2/2003 Ananian
2003/0070070 Al 4/2003 Yeager et al.
2004/0030934 Al 2/2004 Mizoguchi et al.

2004/0210536 Al 10/2004 Gudel;j et al.
2004/0225878 Al 11/2004 Costa-Requena et al.
2004/0242238 Al 12/2004 Wang et al.
2005/0071282 Al 3/2005 Luetal.
2005/0135242 Al 6/2005 Larsen et al.
2005/0172229 Al 8/2005 Reno et al.
2005/0254653 Al 11/2005 Potashnik et al.
2006/0168259 Al 7/2006 Spilotro
2006/0168663 Al 7/2006 Viljoen et al.
2006/0235795 Al 10/2006 Johnson et al.
2007/0011724 Al 1/2007 Gonzalez et al.
2007/0067828 Al 3/2007 Bychkov
2007/0074276 Al 3/2007 Harrison et al.
2007/0079135 Al 4/2007 Saito
2007/0157304 Al 7/2007 Logan et al.
2007/0174904 Al 7/2007 Park
2007/0186095 Al 8/2007 Ganesan et al.
2007/0198437 Al 8/2007 Eisner et al.
2007/0234061 Al 10/2007 Teo
2007/0279227 Al 12/2007 Juels
2007/0283273 Al 12/2007 Woods
2008/0028447 Al 1/2008 O’Malley et al.
2008/0034216 Al 2/2008 Law
2008/0052180 Al 2/2008 Lawhorn
2008/0109657 Al 5/2008 Bejaj et al.
2008/0120707 Al 5/2008 Ramia
2008/0172730 Al 7/2008 Sandhu et al.
2008/0254765 Al 10/2008 Eliaz
2009/0037983 Al 2/2009 Chiruvolu et al.
2009/0093300 Al 4/2009 Lutnick et al.
2009/0119754 Al 5/2009 Schubert
2009/0119776 Al 5/2009 Palnitkar et al.
2009/0132813 Al 5/2009 Schibuk
2009/0235339 Al 9/2009 Mennes et al.
2009/0249076 Al 10/2009 Reed et al.
2009/0249077 Al 10/2009 Gargaro et al.
2009/0254572 Al 10/2009 Redlich et al.

JP 11-338933 12/1999
JP 2002-259344 9/2002
JP 2005-209083 8/2005
JP 2010-224810 10/2010
WO 2008/098004 A2 8/2008
WO WO 2009/001855 12/2008
WO WO 2011/142929 11/2011
WO WO 2012/060891 5/2012
WO WO 2013/101286 7/2013
OTHER PUBLICATIONS

Saxena, N. et al., Secure Device Pairing based on a Visual Channel,

pp. 1-17.

Kim, E., et al., Providing Secure Mobile Device Pairing Based on
Visual Confirmation, The 13” IEEE International Symposium on

Consumer Electronics (ISCE2009), pp. 676-680.

International Search Report/Written Opinion, PCT/US2011/022486,
mailed Apr. 20, 2011.

International Search Report/Written Opinion, PCT/US2011/023528,
mailed Apr. 27, 2011.

International Search Report/Written Opinion, PCT/US2011/032295,
mailed Jun. 13, 2011.

International Search Report/Written Opinion, PCT/US2011/032271,
mailed Jul. 11, 2011.

International Search Report and Written Opinion, PCT/US2012/
032840, Jun. 20, 2012.

Gralla, P. How the Internet Works, 2006, Que, pp. 346-347.

WOT *online). Against Intuition Inc., 2006 [retrieved on Aug. 24,
2012). Retrieved from the *Internet: URL:web.archive.org/web/
20061127233933/http://www.mywot.com/en/wot/help/wot__sym-

bols__explained/, pp. 1-3.

Admin, Battlenet mobile authenticator for free!, Jun. 2010,
Retrieved from the Internet <URL: warcraftguru.com/tag/battle-net-

mobile-authenticator-for-free>, pp. 1-3 as printed.

PCT International Search Report and Written Opinion issued in
International Application No. PCT/US 11/22482 on Jan. 26, 2011.

PCT International Search Report and Written Opinion issued in the
International Application No. PCT/US2011/023525 on Apr. 5, 2011.
Extended European Search Report issued in European Application

No. 12 862 057.2 dated Dec. 9, 2014.

US 9,197,406 B2

Sheet 1 of 2

Nov. 24, 2015

U.S. Patent

30ING3S

Y800

so1”

| ainbi4
GGl
i
C \av vaooo [w3anu3s
311S93M szi= Vvdg00D
(
0S4
0sh
son 009
Zh—T1 ¥3smoug
MOGNIM
0011 VY9000
i

\
dolysaa¥asn

US 9,197,406 B2

Sheet 2 of 2

Nov. 24, 2015

U.S. Patent

¢ 24nbi4
Cavvacoo— 7% 5 H3aAyasy J| asrgonsng
311S83IM 526 V800D L¥37
(J
0SE i 0Bt
pal
o’
pst
00k @9
//
N Y
dd¥
PRy
M
ZLe-T1 yasmoud | pis”
MOGQNIM
00£~"1 15 AYE000
doms3ay¥asn ¢

US 9,197,406 B2

1

KEY MANAGEMENT USING QUASI OUT OF
BAND AUTHENTICATION ARCHITECTURE

RELATED APPLICATIONS

This application is related to pending application Ser. No.
13/081,150, filed Apr. 6, 2011 and entitled “FLEXIBLE
QUASI OUT OF BAND AUTHENTICATION ARCHITEC-
TURE”, which claims priority based on Provisional U.S.
Application Ser. No. 61/334,776, filed May 14, 2010. This
application is also related to pending application Ser. No.
13/081,067, filed Apr. 6, 2011 and entitled “SECURE AND
EFFICIENT LOGIN AND TRANSACTION AUTHENTI-
CATION USING IPHONES™ AND OTHER SMART
MOBILE COMMUNICATION DEVICES”, which claims
priority based on Provisional U.S. Application Ser. No.
61/327,723, filed Apr. 26, 2010. This application is also
related to pending application Ser. No. 12/938,161, filed Nov.
2, 2010 and entitled “A NEW METHOD FOR SECURE
SITE AND USER AUTHENTICATION”, which claims pri-
ority based on Provisional U.S. Application Ser. No. 61/257,
207, filed Nov. 2, 2009 and entitled “Project Seal”. This
application is also related to pending application Ser. No.
13/006,806, filed Jan. 14, 2011 and entitled “A NEW
METHOD FOR SECURE USER AND SITE AUTHENTI-
CATION”, which is a continuation of pending application
Ser. No. 12/938,161. This application is also related to pend-
ing application Ser. No. 13/011,587, filed Jan. 21, 2011, and
entitted A NEW METHOD FOR SECURE USER AND
TRANSACTION AUTHENTICATION AND RISK MAN-
AGEMENT”, which claims priority based on Provisional
U.S. Application Ser. No. 61/298,551, filed Jan. 27,2010 and
entitled “Authentication-The Game Changer”. This applica-
tion is also related to application Ser. No. 13/011,739, filed
Jan.21,2011, and entitled ANEW METHOD FOR SECURE
USER AND TRANSACTION AUTHENTICATION AND
RISK MANAGEMENT”, which is a continuation-in-part of
pending application Ser. No. 13/011,587. The contents of the
above identified applications are hereby incorporated herein
in their entirety by reference.

TECHNICAL FIELD

This invention relates to security and privacy. More par-
ticularly it relates to using the quasi out of band authentication
(QOOBA) architecture for key management.

BACKGROUND OF THE INVENTION

The increasing sophistication of site specific attacks based
on man-in-the-middle (MITM) and man-in-the-browser
(MITB) techniques has profound implications for our current
authentication techniques. Specifically, the strength of the
initial login authentication is increasingly becoming less rel-
evant as these attacks manipulate transactions after the legiti-
mate user has provided the initial credentials to login. In
reaction to this trend, leading organizations have begun
deploying transaction authentication systems, such as EMV-
CAP based token authenticators, or have been using out of
band authentication (OOBA) techniques to ensure that the
user actually intended the transaction being seen at the back
end. However, such approaches are inherently not easy to use
and consequently, even when deployed, are generally used
only for high risk transactions or occasional events like pro-
file changes. For the vast majority of transactions no current
authentication solution provides a reasonable point in the
“How easy? How secure? How costly?” trade-off.

10

15

20

25

30

35

40

45

50

55

60

65

2

In prior work (see the related applications identified
above), we described innovations that address some of the
problems with conventional authentication systems. Specifi-
cally, we introduced the notion of using QOOBA techniques
to ensure that the user actually intended the transaction being
seen at the back end. We also described how these techniques
can be used to provide a user with a one time password (OTP)
to enable login into a website (i.e. authentication of the user to
the website), based on a secret shared between the web site
and a QOOBA security server. Thus these techniques can be
used to provide the security of one time passwords, but do not
require a per user shared secret which all prior one time
password systems have required.

We also extended our prior work to address the issue of
providing an authentication solution for the vast majority of
transactions at a reasonable point in the “How easy? How
secure? How costly?” trade-off.

Here, we extend our prior work to consider solutions to the
key management problem, which surfaces in various con-
texts. Three of many potential examples include the follow-
ing.

Below we will describe various examples of how key man-
agement can be beneficially layered on top of a QOOBA
architecture. Our first example relates to digital signing. In
applications that require digital signing, a user needs to be
provisioned a private key and a digital certificate, i.e. a bind-
ing of the user’s identity and public key as certified by a
Certificate Authority. The use of such a private key, which is
not known to any 3" party, including the security server,
provides for strong non-repudiation which is necessary for
some applications. We follow the industry convention of
referring to signatures created with public key cryptography
as “digital signatures”. As will be understood by those skilled
in the art, signatures based on underlying symmetric cryptog-
raphy with shared secrets, like that which the QOOBA system
as described above already provides, are usually referred to as
“electronic signatures”.

Our second example relates to encrypted document deliv-
ery. When an encrypted file is sent to a user, for example a
PDF of a brokerage statement, the user needs to be provided
with the key with which the file was encrypted.

Our third example relates token authenticators. When users
are provisioned a token authenticator, either for a one time
password generator or a transaction authenticator, the user’s
token needs to be provided with a shared secret key. Those
skilled in the art will recognize that in this context, the shared
secret key is often characterized as a “seed”).

In all these examples key management adds directly to the
cost of the system, and indirectly effects the security. Keys
need to be generated, distributed and maintained in sync. As
keys can get lost, corrupted or stolen, key management is
usually a significant source of costs, and a point of vulner-
ability in the system.

OBIJECTIVES OF THE INVENTION

Accordingly, it is an objective of the present invention to
provide an innovative way to leverage the QOOBA system to
perform key management for digital signing, encryption and
token seed management.

Additional objects, advantages, novel features of the
present invention will become apparent to those skilled in the
art from this disclosure, including the following detailed
description, as well as by practice of the invention. While the
invention is described below with reference to preferred
embodiment(s), it should be understood that the invention is
not limited thereto. Those of ordinary skill in the art having

US 9,197,406 B2

3

access to the teachings herein will recognize additional
implementations, modifications, and embodiments, as well as
other fields of use, which are within the scope of the invention
as disclosed and claimed herein and with respect to which the
invention could be of significant utility.

SUMMARY DISCLOSURE OF THE INVENTION

In accordance with certain preferred aspects of the inven-
tion, a security server can be operated so as to provide key
management layered on a quasi out of band authentication
system. A request for activation of a user interface window for
a particular user at a network device, such as a desktop com-
puter, associated with that user is received from the network
device via a communication channel. At this point, the com-
munication channel is non-secure or what is sometimes
referred to as “clear”. It will be recognized by those skilled in
the art that having an non-secure channel at this point in a
communication protocol is not unusual. For example, when a
user initiates communications with an SSL protected website,
an insecure or clear TCP/IP connection is initially set up, and
only later is SSL security established on top of the non-secure
or clear TCP/IP connection.

Next, to authenticate the user to the security server, an
activation PIN (personal identification number) is transmitted
to an out of band authentication (OOBA) system for forward-
ing to the user’s telephone via a voice or text message. For
example, the OOBA system may place a call to the user’s
home or cell phone, and convey the PIN to the user verbally,
or may send a text message to the user’s smart phone, e.g. the
user’s [Phone™ or Blackberry™, and convey the PIN to the
user in written form. In either case, the user must enter, i.e.
copy, the conveyed PIN into the user interface window, so that
it will be conveyed back to the security server. In this way, the
PIN previously transmitted by the security server to the
OOBA system is received back by the security server from the
user’s network device via the communication channel, and
the user is authenticated, or authentication is refused, based
on the returned PIN.

Subject to the user being authenticated by the security
server, a secure, independent, encrypted communication
channel between the user interface window and the security
server is established on top of the originally established com-
munication channel. With this secure channel established,
key material and/or certificate material for public key and/or
symmetric key cryptography based operations can be gener-
ated and/or securely transmitted between the user interface
window and the security server. It is perhaps worthwhile
noting here that key material and certificate material are well
understood terms in the art. For example, key material often
includes symmetric keys or asymmetric keys and certificate
material often includes user identity and public key binding.

In implementations involving the generation and transmis-
sion of key material for public key cryptography, the security
server preferably receives a public key Pu of a private/public
key pair Du/Pu associated with the user and previously gen-
erated by the user interface window. The public key Pu is
received from the user interface window via the secure, inde-
pendent, encrypted communication channel. In response, the
security server transmits a signed certificate, which associates
the user with the received public key Pu, and instructions for
storage of the certificate, both going to the user interface
window via the secure channel.

The certificate may be signed by the security server itselfor
by an external authenticating authority, such as a third party
certificate authority. If the security server acts as an Interme-
diate or Root Certificate Authority, preferably the security

10

15

20

25

30

35

40

45

55

60

65

4

server generates and signs the certificate using locally stored
certificate authority key material. If, on the other hand, the
certificate is signed by an external certificate authority, the
security server preferably sends an unsigned certificate to the
external certificate authority and receives the signed certifi-
cate from the certificate authority. In such a case, it is the
certificate signed by the external certificate authority that is
transmitted by the security server to the user interface win-
dow.

The transmitted storage instruction may, depending on the
implementation, require storage of the user private key Du
and signed certificate in memory on the user’s network
device, or in the key store of an operating system, such as the
Windows™ operating system, of the network device, or both.
Alternatively, the transmitted storage instruction may explic-
itly or implicitly leave the storage decision to the user inter-
face window. For example, if no storage instruction is pro-
vided this may be considered by the user interface window to
be an implicit instruction that it is up to the user interface
window to decide where to store the user private key Du and
signed certificate. Storage may be for the benefit of only the
user interface window, or it may additionally be for the benefit
of other local applications, which may include the browser
application.

In implementations involving the generation and transmit-
tal by the security server of key material for symmetric key
cryptography operations, the security server beneficially
receives an authenticated request containing unique identify-
ing information associated with the user or with a file, i.e. a
document, such as an Adobe™ or WinZip™ file or document.
This information may be received from the user interface
window or from a third party network site, such as a merchant
or bank website. Irrespective of which entity the request is
received from, the security server generates a unique sym-
metric key K. The key K is generated using a one-way func-
tion, and the key’s value is derived from the received unique
identifying information and a secret known only to the secu-
rity server. The security server transmits the symmetric key K
to the requester, i.e. the user interface window or the third
party network site.

In implementations involving the security server perform-
ing public key cryptography operations to obtain a digital
signature on a transaction, the security server advantageously
receives the transaction and a request for digital signing of the
transaction from a third party network site, such as a merchant
or bank website. The security server transmits the transaction
and a request for a digital signature to the user interface
window via the secure channel. In response, the security
server receives, from the user interface window, a hash of the
transmitted transaction digitally signed with the user’s private
key Du via the secure channel. The security server next trans-
mits the received digitally signed hash of the transaction and
a certificate to the third party network site. The security server
also transmits instructions for the third party network site to
verify the digital signature by recomputing the hash and com-
paring it with the hash that can be recovered from the trans-
mitted digitally signed hash by applying the user’s public key
Pu included in the transmitted certificate to the transmitted
digitally signed hash. This instruction can be explicit or
implicit. For example, the security server may provide no
instruction regarding verification and this may be considered
by the third party network site as an implicit instruction to
perform verification in the manner described about.

Even if a digital signature is required, it may be desirable to
also obtain the user’s electronic signature on the transaction.
If so, the security server can transmit, to the user interface
window for presentation to the user, a personal identification

US 9,197,406 B2

5

number (PIN) with which to electronically sign the transac-
tion presented in a browser window displayed at the user’s
network device. The PIN is transmitted via the secure, inde-
pendent, encrypted communication channel. The user enters
the transmitted PIN presented in the user interface window
into a browser window, which is communicating with the
third party network site with which the user is transacting the
business, to electronically sign the transaction. It is highly
preferable that the PIN corresponds to a secret shared by the
security server and the third party network site, but not by the
user.

The transmitted transaction may or may not include an
instruction to present the transaction to the user in the user
interface window and/or to obtain approval of the user priorto
digitally signing of the transaction. Here again, the instruc-
tion may be explicit or implicit. For example, in the case of
approval, the user’s approval of the transaction might require
the user to click on an approved button presented in the user
interface window, prior to the user interface window digitally
signing the transaction. Alternatively, approval might be sig-
naled by the user not rejecting the transaction presented on the
user interface window within a predefined period oftime after
the transaction is first presented in the user interface window.

In the case of digital signatures, the user interface window
may manage storage of the user’s private key Du and the
signed certificate in memory, or in the key store of an oper-
ating system of the network device, or in both, for the benefit
of other local applications. The security server may also
verify the digital signature before transmitting the received
digitally signed hash of the transaction and the certificate to
the third party network site. To verify the signature, the secu-
rity server recomputes the hash of the transaction and com-
pares it with the hash recovered from the received digitally
signed hash by applying the user’s public key Pu included in
the received certificate to the received digitally signed hash of
the transaction.

In implementations involving the security server perform-
ing symmetric key cryptography based operations that
include sharing encryption keys, the security server receives
a request for one or more encryption keys associated with
particular combinations of sender identification, recipient
identification and document identification, which are collec-
tively referred to as DocumentID, from a third party network
site, e.g. a merchant, a bank, the U.S. Government, etc.

The security server then generates one or more symmetric
encryption keys for each DocumentID. The symmetric
encryption keys are generated based on a one way function,
the applicable DocumentID, a secret known only to the secu-
rity server and, if desired, other information commonly used
to generate symmetric crypto keys and well known to those
skilled in the art. The security server transmits the generated
encryption keys to the third party network site, with instruc-
tions to encrypt the document represented by the applicable
DocumentID with the appropriate key(s) and to transmit the
encrypted document to the user. Here again, the instructions
may be explicit or implicit.

The security server next receives a request for the one or
more symmetric encryption keys required to decrypt a docu-
ment represented by a particular applicable DocumentID.
The request includes the applicable DocumentID and is
received from software, other than the user interface window,
which is operating on the network device and being used to
open an encrypted document represented by an applicable
DocumentID. For example, the request may be received from
Adobe™ or WinZip™ or browser software. It may in certain
cases be preferable to receive the request directly from the
software. However, in other cases it may be preferable to

25

40

45

6

receive the request from the software via a network site which
is in communication with the software attempting to open the
document.

The security server recomputes or receives the applicable
one or more symmetric encryption keys. It then transmits the
recomputed or received applicable encryption key(s) to the
user interface window. Transmitted with the applicable key(s)
are instructions to present the applicable key(s) to the user for
copying, i.e. entry, into the software to decrypt the document
represented by the applicable DocumentID. Here again, the
instructions to the user interface window can be explicit or
implicit.

Ifreceived, the applicable symmetric encryption key(s) are
received from a network site in communication with the soft-
ware attempting to open the document, and the key(s) trans-
mitted to the user interface window are the key(s) received by
the security server from the network site. If recomputed, the
security server recomputes the applicable key(s) based on the
one way function, the applicable DocumentID, the secret
known only to the security server and the other information,
and the key(s) transmitted to the user interface window are the
recomputed key(s).

In implementations involving the security server perform-
ing symmetric key cryptography based operations to provide
a seed for token authenticator hardware or software, the secu-
rity server receives a request for a token seed from the user
interface window. Along with the token seed request it also
receives a user identifier and/or a token identifier for which
the seed is requested.

The security server generates the seed, based on a one way
function, the identifier or identifiers, a secret known only to
the security server and other information well known to those
skilled in the art. It then transmits, to the user interface win-
dow, the generated seed with explicit or implicit instructions
to either present the transmitted seed to the user on the user
interface window display for entry by the user into a seeding
interface of the token or to enter the transmitted seed into the
seeding interface of the token directly without user interven-
tion. This transmission is made to the user interface window
via the secure, independent, encrypted communication chan-
nel. The transmitted seed may, in certain implementations,
beneficially be an intermediate seed, which will be processed
by the token software to generate the final seed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 depicts the main components of the flexible quasi
out of band authentication architecture, in accordance with
the present invention.

FIG. 2 shows the flexible quasi out of band authentication
architecture with the key management functionality layered
on top, in accordance with the present invention.

PREFERRED EMBODIMENT(S) OF THE
INVENTION

General Overview of Prior Work Related to QOOBA

In prior work we have described how the introduction of a
network based security server, which has an independent
channel to a window displayed on a user device, can be used
in conjunction with a user’s browser, computer software or
smart phone or other mobile communications device appli-
cation, and the website they are visiting to provide user
authentication for login or transaction authorization via one
or more user network device.

QOOBA is an innovative approach to create a solution that
can be used to authenticate every transaction in a manner that

US 9,197,406 B2

7

will feel natural to users. The central idea is to create a small
secure window, the QOOBA Window, that has an indepen-
dent encrypted channel to a secure server (the QOOBA
Server). The QOOBA Window can be implemented as a
zero-download browser pop-up (the QOOBA Pop-up Win-
dow), as a small desktop application (the QOOBA Software
Window) or as an app on a smart phone (the QOOBA Phone
Window). An important aspect to the innovation is that,
unlike as with soft tokens, the QOOBA Window does not
require secure storage of long term secrets. Rather, it is “acti-
vated” during login by using out of band authentication. As a
user transacts at a web site, (e.g. a merchant or bank website,
that is part of the QOOBA Network, the transactions that the
web site believes the user intends are sent securely via the
user’s browser to the QOOBA Server which displays the
transaction in the QOOBA Window. The user is also option-
ally shown a transaction signature that the user can cut and
paste from the QOOBA Window into their browser to authen-
ticate to the website for login or transaction authorization
purposes.

Overview Of Prior Work Relating to a Flexible QOOBA
Architecture

The QOOBA solution has the following benefits in terms
of ease of use, total cost of ownership and, of particular
interest here, security.

First, with regard to ease of use, the user has no new device
to carry or password to remember, beyond having access to
the phone used for out of band authentication. The user does
not have to enter any cryptic transaction code into a device
and type the result into the browser. Instead, the user sees the
entire transaction in their QOOBA Window and can copy and
paste the transaction signature with a few clicks.

Second, with regard to total cost of ownership, the QOOBA
architecture significantly reduces total lifecycle costs. It
requires no new hardware and, unlike a soft token, does not
require per user provisioning and management of secrets.
Further, as all communications between the web site and the
QOOBA server can occur via the browser, the integration
requirements at the web site are extremely light. The overall
costs of the QOOBA solution are designed to be significantly
less than an equivalent soft token deployment, and far less
than that of a physical token.

Finally, in terms of security, as will be further discussed
below, the level of assurance depends on the form factor of the
QOOBA Window that is used. The smartphone based
QOOBA Window, i.e. the QOOBA Phone Window, provides
the highest assurance, but even the zero download pop-up, i.e.
the QOOBA Pop-up Window, significantly raises the bar for
an attacker. The software QOOBA window, i.e. the QOOBA
Software Window, is likely to be satisfactory for almost all
risk levels.

In our prior work we have described how, by implementing
the QOOBA solution using a flexible QOOBA architecture,
the web sites in the QOOBA Network are allowed to request
or select the form factor and a type of transaction approval
appropriate for the transaction. For instance, a user can simul-
taneously have a QOOBA Window on their smartphone as
well as on their desktop. While most transactions can be sent
to their desktop QOOBA Software Window (which is far
more convenient), the highest risk transactions can be sent to
their smartphone QOOBA Phone Window. A user can be
requested to approve most transactions by simply clicking on
an approval button, but allowed to approve other transactions
by simply taking no action and still other transactions by
placing a secure electronic signature on the transaction.

10

15

20

25

30

35

40

45

50

55

60

65

8

Overlaying Key Management on the QOOBA Architecture

We now describe how we overlay components for key
management on the QOOBA architecture.

The QOOBA System

Referring now to FIG. 1, in accordance with the present
invention, the QOOBA system consists of a desktop personal
computing device 100 having the QOOBA

Window 110 and a Browser Window 112 executing and
displayed thereon, a QOOBA Server 125 and Web Service
150, which has the QOOBA Application Programming Inter-
face (API) 155 operable thereon. It should be understood that
in a practical implementation there would typically be mul-
tiple websites. Also included in the system as shown is an
OOBA Service 165, which is utilized by the QOOBA Server
125 to bootstrap authentication of the user using the user’s
phone 175, which may be a landline, cellphone or smart-
phone.

As described in more detail in the related applications
referenced above, the user activates the QOOBA Window
110, typically by using out of band authentication via OOBA
Service 165, and establishes a session with the QOOBA
Server 125. Web Service 150 participates in the QOOBA
Network and goes through a onetime set up process to estab-
lish a shared secret with the QOOBA Server 125, which is not
shared with or known by the user. When the user has an active
session with the QOOBA Server 125 via communication
channel 450 and is also at the Website 150 viacommunication
channel 400, the Website can use the QOOBA API 155 to
request, via back end communication channel 500, transac-
tion authentication by sending the transaction directly to the
QOOBA Server 125. The QOOBA Server 125 then displays
the transaction to the user in the applicable QOOBA Window,
which is shown in FIG. 1 to be Window 110.

The QOOBA Windows

The QOOBA Server 125 can present various information
to the user in the displayed QOOBA Window 110. For
example, as we have described in our prior work, the QOOBA
Server 125 can display a transaction to the user in the
QOOBA Window 110, and if requested, also display in the
QOOBA Window 110 a transaction, i.e. electronic, signature
derived from the transaction, the secret shared between the
QOOBA Server 125 and the Website 150, and other informa-
tion. This is accomplished via communication channel 600.
The user is optionally given the choice of accepting or reject-
ing the transaction. Acceptance can be signaled passively by
taking no action, by clicking OK within the QOOBA Window
110 and sending a signal via communication channel 600
back to the QOOBA Server 125, or by copying and pasting the
transaction signature from the QOOBA Window 110 into the
web application displayed in the Browser Window 112 and
then sent back to the Web Service 150 via communication
channel 400. If the transaction signature from the QOOBA
Window 110 is pasted into the web application displayed in
the Browser Window 112, the Website 150 can verify the
signature using the transaction, the secret shared between the
QOOBA Server 125 and the Web Service 150, and other
information.

Thus, one approval type may be characterized as
“INFORM”. The transaction is simply shown to the user, and
no confirmation is required. This is like an “activity stream”
and can reassure the cautious user. Another approval type can
be characterized as “CONFIRM”. The user is asked to con-
firm or deny the transaction within the QOOBA Window 110
and this response is sent back to the Web Service 150 via the
QOOBA Server 125. A still further approval type can be
characterized as “SIGN”. The QOOBA Server 125 generates
a personal identification number (PIN), which will serve as

US 9,197,406 B2

9

the “transaction signature”, and shows it to the user within the
QOOBA Window 110 or a QOOBA Window (not shown) on
the smartphone. The user copies this transaction signature
into their browser window 112 and sends it to the Web Service
150. As the PIN is derived from a secret shared between the
QOOBA Server 125 and the Web Service 150 (and never
revealed to the user), the Web Service 150 can recalculate the
transaction signature independently and thus confirm the
transaction. It will be observed that this achieves the same
security effect of a transaction authenticator system, but there
is no per user provisioning of secrets.

The user interface to the QOOBA Server 125 remains
largely constant regardless of the browser and/or operating
system (OS) being used and the form factor of the QOOBA
Window 110. The only use-case in which the user experience
deviates is when the user is browsing on a smartphone, where
the QOOBA experience is optimized for the device.

As noted above, the QOOBA Window 110 can be imple-
mented in one of at least three form factors, a browser pop-up,
which we commonly refer to as the QOOBA Pop-up Window,
does not require any software download, a small application
that is installed on the desktop, which we commonly refer to
as the QOOBA Software Window, or as a smart phone app,
which we commonly refer to as the QOOBA Phone Window.

The same user might well be using different form factors at
different times. For instance, a user who has the software
QOOBA Window installed, and uses that most of the time,
might use the browser pop-up QOOBA Window while at
some other desktop (roaming). For certain high risk transac-
tions, the website might require showing the transaction on
the smartphone QOOBA Window, while most transactions
are shown in the desktop window. The look and feel of the
QOOBA Window 110 is entirely customizable by the particu-
lar QOOBA Network. An implementation for a bank intended
solely for its own websites might look and feel very different
from an implementation by a payment service that offers
authentication into various eCommerce web services, like the
Web Service 150. Although numerous eclements are
described, it should be understood that most of them are
optional.

Key Management using the QOOBA Architecture

Turning to FIG. 2, central to the QOOBA system is the
establishment of a secure, encrypted and independent chan-
nel 600 between the QOOBA Window on a user’s desktop
100 or the QOOBA Window on the user’s smartphone 175
(not shown) and the QOOBA Security Server 125. As
described above, the QOOBA Window is used to show the
user transactions and provide them with the opportunity to
confirm, i.e. approve, the transaction.

‘We now introduce into the architecture, as shown in FIG. 1,
the QOOBA Key Management Logic—Client (KMLC) 610
on the user’s desktop 300, the QOOBA Key Management
Logic—Server (KMLS) 620 on the QOOBA security server
325, the QOOBA Key Management Logic—API (KMLAPI)
630 on the Web Service 350, and the possibility of “non-
browser” desktop or smartphone software (e.g. Acrobat
Reader) 314. KMLC 610 and KMLS 620 communicate over
the secure QOOBA channel 600 between the QOOBA Win-
dow 310 and the QOOBA security server 325. KMLS 620 and
KMLAPI 630 communicate over the back-end communica-
tion channel 500 between the QOOBA security server 325
and the Web Service 350.

With further reference to FIG. 2, within the above
described framework, key generation proceeds as follows. At
some point after the QOOBA Window 310 is activated, the
KMLC 610 generates a private/public key pair, e.g. Du/Pu
and stores the private key Du securely (typically in memory).

5

10

15

20

25

30

35

40

45

50

55

60

65

10
KMLC 610 sends the public-key Pu to the QOOBA Server
325, where the request is intercepted by the KMLS 620. A
digital certificate (“Cert”), which includes the user’s public
key Pu, is prepared by KMLS 620, and one of two things
happens.

IfKMLS 620 is capable of acting as an Intermediate or root
Certificate Authority, it signs the certificate and returns the
signed certificate to KMLC 610, which maintains it locally
(preferably in memory). For example, KMLS 620 could sign
the Cert with the private key Ds of'it’s private/public key pair
Ds/Ps, such that [Cert]Ds is returned to KMLC 610.

On the other hand, if KMLS 620 acts as a “registration
authority”, it forwards the certificate request to an external
Certificate Authority 900, which creates the certificate and
returns it to KMLS 620, which in turn forwards the certificate
back to 610, which maintains it locally (preferably in
memory). In such a case, the Cert will be signed by the
Certificate Authority with the private key Dca of'it’s private/
public key pair Dca/Pca such that [Cert]Dca is returned to
KMLS 620. KMLS 620 then forwards the received signed
Cert, i.e. [Cert]Dca, to the KMLC 610.

It is preferable in either instance for the Cert issued to be
relatively short lived, i.e.

temporary, and coincident with the life of the QOOBA
session itself. By making it simple to do key generation coin-
cident with activation, the need to store digital certificates and
private keys locally over an extended period is avoided.

In some situations, as will be discussed in more detail
below, the private key and certificate may be needed by other
applications, e.g. browsers 312 or document processors 314,
on the same desktop (or mobile device). If the underlying
operating system supports standard key stores, as MS Win-
dows™ or Apple MacOS™ do, then the KMLC 610 can be
tasked with committing the keys to the key store and deleting
them when appropriate.

In addition to the above described generation of keys suit-
able for public key cryptography, i.e. asymmetric keys, the
key management system can also generate and distribute
symmetric keys. Central to this is a function Shared_Secret_
Generator(), incorporated within KMLS 620, that takes as
input such factors as the UserlD (perhaps the user’s hard line
or cell phone number), a long lived secret known only to the
QOOBA Server 325, and other miscellaneous parameters,
and produces as output the shared_secret K. It is important to
note that for a given set of inputs the same shared secret will
be computed deterministically. Different authenticated enti-
ties can request the KMLS 620 to provide them with the
appropriate symmetric key by providing the KMLS 620 the
applicable input parameters.

Note that depending on the application QOOBA Key Man-
agement Logic may make use of one or both of the asymmet-
ric (i.e. public) key cryptography or symmetric key cryptog-
raphy capabilities described above. We have now described
the key management system including its key generation
capabilities, and turn our attention to three example applica-
tions that make use of these capabilities.

Using QOOBA Key Management for Digital Signing

As described earlier, for certain applications, digital sign-
ing using public key cryptography is considered more appro-
priate than electronic transaction signing. Digital signing is
accomplished using the steps described below.

The end user browses in browser window 312 and executes
atransaction ata Web Service 350. The Web Service 350 uses
the KMLAPI 630 to make a request for transaction signing
with “digital signing” required. This request is sent over
secure back-end communication channel 500 to KMLS 620.
The request is then send from KMLS 620 to KMLC 610 via

US 9,197,406 B2

11

secure channel 600, with an indication that a digital signature
is required. The QOOBA transaction signature PIN is option-
ally generated by the QOOBA Server 325 and sent along with
the digital signature request. It should be understood that, as
described above, the PIN could, if desired, be sent by the
QOOBA Server 325 to a QOOBA Window, similar to
QOOBA Window 310, displayed on the user’s smartphone
(not shown), via a persistent connection similar to connection
600, rather than to QOOBA Window 310 displayed on the
desktop 300 as shown.

The QOOBA Window 310 shows the user the transaction
as usual, and optionally requires the user to copy the transac-
tion signature PIN, i.e. the electronic signature, into the
browser window 312. In parallel the KMLC 610 computes a
hash on the transaction (“HashTran) and computes a digital
signature using the user’s private key Du, which was previ-
ously stored in memory, the result being [HashTran|Du. This
process could happen behind the scenes or by asking the user
to agree to sign the transaction. In either case, the digital
signature Du is applied to the hashed transaction [HashTran)].
The digitally signed hash of the transaction [HashTran]Du is
then sent, via secure channel 600, from KMLC 610 to KMLS
620, along with the digital certificate [Cert]Ds or [Cert]Dca.

KMLS 620 can optionally perform a validation of the
signature by applying the user’s public key Pu to the digital
signature [HashTran]Du to obtain HashTran, and comparing
it to an independently generated HashTran. Whether or not
validation is performed, the KMLS 620 forwards the signa-
ture to KMLAPI 630 via secure channel 500.

KMLAPI 630 can recompute the hash HashTran and verify
the signature using the user’s public key Pu included in the
digital certificate, Cert. Thus, the KMLAPI 630 applies the
KMLS 620 public key Ps to [Cert]Ds, or the Certificate
Authority public key Pca to [Cert]Dca, to recover Pu. It then
applies the recovered Pu to [HashTran]Du to recover Hash-
Tran and compares it to an independently generated HashT-
ran to verify the signature.

Note that in the above description, the hash is created at
KMLC 610. However, it could as easily be created at
KMLAPI 630 or KMLS 620, though it is likely that each
entity would recompute it to be assured of its authenticity.

Inthis example the entire transaction comes to the QOOBA
Window 310. If, on the other hand, a document needs to be
signed using this approach, then it is possible to extend the
functionality to have the KMLC commit the private key and
public key to the key stores available on the user’s desktop
300, which would make the keys available to other applica-
tions, e.g. browsers 312 or non-browser apps 314. KMLC
would be responsible for deleting the user keys from the key
store at the appropriate time.

Using QOOBA Key Management for Sharing Encryption
Keys

It frequently happens that data is encrypted and forwarded
to the recipient in a store and forward system such as email.
For instance, regulations require that documents, such as
financial statements or health records, must be sent encrypted
if sent as email attachments. Many applications, e.g. Win-
Zip™ and Acrobat Reader™, have built in password based
encryption capabilities. The question then arises as to how the
decryption password is sent to the user. One approach is to a
priori agree on a shared password. Drawbacks of this
approach are that a compromised password can be used to
decrypt many documents, and it is also difficult to require
complex passwords as the user is likely to forget the pass-
word. Described below are three approaches of using the
QOOBA Key Management system to solve this problem.

10

15

20

25

30

40

45

50

55

60

65

12

Approach 1

A document identified uniquely, for instance by a unique
DocumentID, is encrypted with a key derived from a PIN, e.g.
an eight character alpha-numeric PIN, by a Web Service 350
and then sent to a user, e.g. via email. For purposes of this
discussion, a DocumentID is a unique value associated with
particular combinations of sender identification, recipient
identification and document identification. When the user
opens the document using some application 314, typically a
software application, on their desktop, e.g. WinZip™ and
Acrobat Reader™, the program sends a signal to the Web
Service 350 indicating that the user is attempting to read the
particular document. Although the application 314 could be
the browser, for purposes of this discussion, as shown in FI1G.
2 it is assumed to be other desktop software.

The Web Service 350 retrieves the PIN with which that
document referenced by Document]ID was initially
encrypted, and then uses KML API 630 to send the PIN to the
QOOBA server 325. The QOOBA server 325, using KMLS
620, forwards the PIN to KMLC 610 and the PIN is then
displayed to the user within the QOOBA Window 310.

The user copies the PIN into the application 314 and
decryption proceeds as normal. It should be observed that, in
general, no changes to the application 314 are required. The
ability to trigger a message to the Web Service 350 when
opened is functionality that is already built into many appli-
cations (e.g. Adobe Reader).

Approach 2

One drawback of the above approach is that the Web Ser-
vice 350 has to maintain a list of DocumentIDs and PINs. One
way to solve this problem is to have the key with which each
document is encrypted be the result of a function, which takes
as input the DocumentID and a long term secret known only
to the Web Service 350. This way the key can be generated
dynamically after the user attempts to open the document as
described in Approach 1.

Approach 3

A drawback of the above is that there is an assumption that
the Web Service 350 is available and on-line when the docu-
ment is opened. As some of the systems that generate and
distribute documents are back-end batch systems, this
assumption may not always be applicable. The QOOBA Key
Management shared secret generation capability can be used
to solve the problem as follows.

The Web Service 350 sends the QOOBA Server 325, either
one at a time, or more likely in a batch file, the DocumentIDs
it wants to encrypt. For purposes of this discussion it will be
assumed that the file contains envelope information such as
sender and recipient IDs. KMLS 620 uses the Shared_Secret_
Generator() described above to compute encryption keys for
each DocumentID. For example, key K1 for one Documen-
tID, K2 for another DocumentID, K3 for another Documen-
tID, etc. These keys are then returned by the KMLS 620 to
Web Service 350. The Web Service 350 then encrypts each
respective documents with the applicable key and sends the
encrypted document, e.g. via email, to the respective appli-
cable users.

The applicable user uses the other desktop software 314 to
open the document, which triggers a request for a key directly
to the QOOBA Server 325 over a secure web connection 750,
which is another communication channel. It should be noted
that this is a direct connection 750 from the non-browser
software 314 to the QOOBA Server 325 and not through
QOOBA Window 310.

This action results in the KMLS 620 using the Shared_
Secret_Generator() to recompute the applicable encryption
key, e.g. K1, K2, K3 etc. The applicable key is then sent to

US 9,197,406 B2

13
KMLC 610 and shown to the user in QOOBA Window 310
for copying into the Non-Browser Window 314 as described
earlier.

While we have described the above using a non-browser
software (e.g. Acrobat Reader) as our example, the same
functionality can be used for browser based web applications.

Using QOOBA Key Management for “Seeding” One-
Time-Passwords (OTPs) and Transaction Authentication
Tokens

One-time-passwords (OTPs) and Transaction Authentica-
tion token authenticators, e.g. hardware, software, smart-
phone apps, etc., all require a key which is stored in the token
and is also stored at the back-end system. Managing these
keys (which are commonly referred to as “seeds”) introduces
costs and complexity. The QOOBA Key Management Sys-
tem can be used to greatly simplify this process.

For purposes of this discussion it is assumed that a token
authenticator (not shown) is implemented as hardware, soft-
ware or as a mobile phone app. The token starts in an inactive
state with no seed present (or a seed refresh is required). A
request is made either directly within the QOOBA Window
310 by the user or directly from the token to the QOOBA
Server 325 or to an external Web Service 350 requesting a
seeding event. Some unique identifier identifying the UserID
is provided to the QOOBA Server 325.

The KMLS 620 within the QOOBA Server 325 uses the
unique UserID and other information, including the long term
secret known only to KMLS 620, as inputs into the Shared_
Secret_Generator() to generate a unique seed for that user.
This seed is sent back to KMLC 610 via the secure channel
600, and then shown to user in the QOOBA Window 310. The
user enters the seed into the software or smartphone app
token. We note that the actual seed may be generated by a
function that transforms the seed the user enters. It will be
recognized that for hardware this will only work if the token
has a keypad, which most transaction authenticators do
indeed have.

As a variant of the above, observe that the transaction
authenticator can be built directly into the QOOBA Window
310 as part of the functionality. While at first blush the ratio-
nale for this may not be obvious, compatibility with existing
systems such as EMV/CAP provides the rationale for this
approach. This on-demand seeding of the transaction authen-
ticators vastly simplifies the costs of provisioning.

I claim:

1. A system to provide key management layered on a quasi
out-of-band authentication system, comprising:

a communications port configured to (i) receive, via a
communication channel from a network device associ-
ated with a user, a request for activation of a user inter-
face window for that particular user at the network
device, (ii) transmit, to an out-of-band authentication
system, an activation personal identification number
(PIN) to be forwarded to a communications device asso-
ciated with the user via a voice or text message, and (iii)
receive, via the communication channel from the net-
work device, the previously transmitted activation PIN;
and

aprocessor configured to (i) authenticate the user based on
the received activation PIN, (ii) establish, on top of the
communication channel after authenticating the user, a
secure, independent, encrypted communication channel
between the user interface window and the security
server; and (iii) at least one of (a) generate and direct
transmission, to the user interface window, via the com-
munications port and the secure, independent, encrypted
communication channel, key material for cryptography

10

15

20

25

30

40

45

50

55

60

14

based operations and (b) receive from the user interface
window via the secure, independent, encrypted commu-
nication channel and the communications port, key
material for cryptography based operations.

2. The system according to claim 1, wherein:

the key material is for symmetric key cryptography based

operations and is generated and directed to be transmit-
ted by the processor, and further comprising:

the port is further configured to receive, from the user

interface window or a network site, an authenticated
request containing unique identifying information asso-
ciated with the user or with a file;
the processor is further configured to generate, using a one
way function, a unique symmetric key K, wherein the
value of the key K is derived from the received unique
identifying information and a secret known only to the
security server; and
the port is further configured to transmit, to the requester,
the generated symmetric key K.

3. The system according to claim 1, wherein:

the communications port is further configured to at least
one of (A) (i) receive, from a network site, a transaction
and a request for digital signing of the transaction, (ii)
transmit, to the user interface window via the secure,
independent, encrypted communication channel, the
transaction and a request for a digital signature, (iii)
receive, from the user interface window via the secure,
independent, encrypted communication channel, a hash
of the transmitted transaction digitally signed with a
private key Du of a private/public key pair Du/Pu asso-
ciated with the user, and (iv) transmit to the network site,
the received digitally signed hash of the transaction and
a certificate, with explicit or implicit instructions for the
network site to verify the digital signature by recomput-
ing the hash and comparing it with the hash recovered
from the transmitted digitally signed hash by applying
the user’s public key Pu included in the transmitted
certificate to the transmitted digitally signed hash, and
(B) transmit, to the user interface window for presenta-
tion to the user, via the secure, independent, encrypted
communication channel, a signature PIN with which to
electronically sign the transaction presented in a
browser window displayed at the network device; and

if the communications port is further configured to receive
the transaction and the request for digital signing of the
transaction, the processor is further configured to per-
form public key cryptography based operations to obtain
a digital signature on the transaction.
4. The system according to claim 3, wherein the signature
PIN corresponds to a secret shared by the security server and
the network site, but not by the user.
5. The system according to claim 3, wherein:
if the communications port receives the transaction and the
request for digital signing of the transaction, the com-
munications port is further configured to (i) receive,
from the user interface window via the secure, indepen-
dent, encrypted communication channel, the public key
Pu, (ii) transmit to the user interface window via the
secure, independent, encrypted communication chan-
nel, (a) the certificate signed by the processor or an
external authenticating authority and associating the
user with the received public key Pu, and (b) instructions
for storage of the certificate and the user’s private key
Du; and

the instructions explicitly or implicitly instruct the user
interface window to manage storage of the user’s private
key Du and the signed certificate (i) in memory, or (ii) in

US 9,197,406 B2

15

the key store of an operating system of the network
device, or (iii) both for the benefit of other local appli-
cations.

6. The system according to claim 1, wherein:

the processor is further configured to perform symmetric
key cryptography based operations, and the symmetric
key cryptography based operations include sharing
encryption keys;

the communications port is further configured to receive,

secret known only to the processor and other informa-
tion; and

16

the communications port is further configured to transmit,
to the user interface window via the secure, independent,
encrypted communication channel, the generated seed,
with explicit or implicit instructions to either (i) present
the transmitted seed to the user on the user interface
window display for entry by the user into a seeding
interface of the token or (ii) enter the transmitted seed
into the seeding interface of the token directly without
user intervention.

§ . .~ 10 10.A system according to claim 9, wherein the transmitted
rom a network site, a request for one or more encryption
keys associated with particular combinations of sender seed is an intermediate seed for processing by the token
S | . 1 part . . software to generate the final seed.
identification, recipient identification and document 11. An article of manufacture for (dine k)
. . .) . providing key manage
1dent1ﬁcat19n, collectively referred to as DocumentlD; ment layered on a quasi out-of-band authentication system,
the processor is further configured to generate one ormore | . omprising:
symmetric encryption keys for each DocumentlD, based non transitory storage media; and
on a one way function, the DocumentID, a secret known logic stored on the storage media, wherein the stored logic
only to the processor and other information; is configured to be executable by a computer and thereby
the communications port is further configured to (i) trans- cause the computer to operate so as to:
mit, to the network site, the encryption keys, with 20 receive, via a communication channel from a network
explicit or implicit instructions to encrypt the document device associated with a user, a request for activation of
represented by the applicable DocumentlD with the a user interface window for that particular user at the
appropriate encryption key or keys and to transmit the network device;
encrypted document to the user, and (ii) receive, from transmit, to an out of band authentication system, an acti-
software, other than the user interface window, that is 25 vation personal identification number (PIN) to be for-
operating on the network device and being used to open warded to the user’s telephone via a voice or text mes-
the encrypted document represented by the applicable sage;
DocumentlD, a request, including the applicable Docu- receive, via the communication channel from the network
mentlD, for the one or more symmetric encryption keys device, the previously transmitted activation PIN;
required to decrypt the encrypted document represented 30 authenticate the user based on the received activation PIN;
by the applicable DocumentlD; establish, on top of the communication channel after
the processor is further configured to (i) recompute, or authenticating the user, a secure, independent, encrypted
receive via the communications port, the applicable one communication channel between the user interface win-
ormore symmetric encryption keys, and (ii) direct trans- dow and the security server; and
mission, to the user interface window via the communi- 35 atleastone of (i) generate and transmit to the user interface
cations port, the recomputed or received applicable one window via the secure, independent, encrypted commu-
or more symmetric encryption keys, with explicit or nication channel key material for cryptography based
implicit instructions to present the applicable one or operations and (ii) receiving from the user interface win-
more symmetric encryption keys to the user for entry dow via the secure, independent, encrypted communi-
into the software to decrypt the encrypted document 40 cation channel, key material for cryptography based
represented by the applicable DocumentlD. operations.
7. The system according to claim 6, wherein the request for 12. The article of manufacture according to claim 11,
the one or more symmetric encryption keys from the software wherein:
is received via a network site which is in communication with the key material is for symmetric key cryptography based
the software attempting to open the encrypted document. 45 operations and is generated and transmitted by the com-
8. The system, according to claim 6, wherein: puter; and
the processor receives the applicable one or more symmet- execution of the stored logic thereby causes the computer
ric encryption keys from a network site which is in to operate so as to also (i) receive, from the user interface
communication with the software attempting to open the window or a network site, an authenticated request con-
document; and 50 taining unique identifying information associated with
the applicable one or more symmetric encryption keys the user or with a file, (ii) generate, using a one way
directed to be transmitted to the user interface window function, a unique symmetric key K, wherein the value
are the applicable one or more symmetric encryption of the key K is derived from the received unique identi-
keys received from the network site. fying information and a secret known only to the secu-
9. The system according to claim 1, wherein: 55 rity server, and (iii) transmit, to the requester, the gen-
the processor performs symmetric key cryptography based erated symmetric key K.
operations, and the symmetric key cryptography based 13. The article of manufacture according to claim 11,
operations include providing a seed for token authenti- wherein:
cator hardware or software; execution of the stored logic thereby causes the computer
the communications port is further configured to receive, 60 to operate so as to at least one of (A) (i) perform public
from the user interface window, a request for a token key cryptography based operations to obtain a digital
seed, and at least one of (i) a user identifier and (i) a signature on a transaction, (ii) receive, from a network
token identifier for which the seed is requested; site, the transaction and a request for digital signing of
the processor is further configured to generate the seed, the transaction, (iii) transmit, to the user interface win-
based on a one way function, the at least one identifier, a 65 dow via the secure, independent, encrypted communi-

cation channel, the transaction and a request for a digital
signature, (iv) receive, from the user interface window

US 9,197,406 B2

17

via the secure, independent, encrypted communication
channel, a hash of the transmitted transaction digitally
signed with a private key Du of a private/public key pair
Du/Pu associated with the user, and (v) transmit to the
network site, the received digitally signed hash of the
transaction and a certificate, with explicit or implicit
instructions for the network site to verify the digital
signature by recomputing the hash and comparing it
with the hash recovered from the transmitted digitally
signed hash by applying the user’s public key Pu
included in the transmitted certificate to the transmitted
digitally signed hash, and (B) transmit, to the user inter-
face window, for presentation to the user, via the secure,
independent, encrypted communication channel, a sig-
nature PIN with which to electronically sign the trans-
action presented in a browser window displayed at the
network device.

14. The article of manufacture according to claim 13,
wherein the signature PIN corresponds to a secret shared by
the security server and the network site, but not by the user.

15. The article of manufacture according to claim 13,
wherein:

if execution of the stored logic causes the computer to

operate so as to perform public key cryptography based
operations to obtain a digital signature on a transaction,
execution of the stored logic thereby causes the com-
puter to operate so as to also (i) receive, from the user
interface window via the secure, independent, encrypted
communication channel, the public key Pu, and (ii)
transmit to the user interface window via the secure,
independent, encrypted communication channel, the
certificate signed by the computer or an external authen-
ticating authority and associating the user with the
received public key Pu, and instructions for storage of
the certificate and the user’s private key Du;

the instructions explicitly or implicitly instruct the user

interface window to manage storage of the user’s private
key Du and the signed certificate (i) in memory, or (ii) in
the key store of an operating system of the network
device, or (iii) both for the benefit of other local appli-
cations.

16. The article of manufacture according to claim 11,
wherein:

execution of the stored logic thereby causes the computer

to operate so as to (i) perform symmetric key cryptog-
raphy based operations, including sharing encryption
keys, (ii) receive, from a network site, a request for one
or more encryption keys associated with particular com-
binations of sender identification, recipient identifica-
tion and document identification, collectively referred to
as DocumentlD, (iii) generate one or more symmetric
encryption keys for each DocumentID, based on a one
way function, the DocumentlD, a secret known only to
the computer and other information, (iv) transmit, to the
network site, the encryption keys, with explicit or
implicit instructions to encrypt the document repre-

35

40

45

18

sented by the applicable DocumentID with the appropri-
ate encryption key or keys and to transmit the encrypted
document to the user, (v) receive, from software, other
than the user interface window, that is operating on the
network device and being used to open the encrypted
document represented by the applicable DocumentlD, a
request, including the applicable DocumentlD, for the
one or more symmetric encryption keys required to
decrypt the encrypted document represented by the
applicable DocumentlD, (vi) recompute or receive the
applicable one or more symmetric encryption keys; and
(vii) transmit, to the user interface window, the recom-
puted or received applicable one or more symmetric
encryption keys, with explicit or implicit instructions to
present the applicable one or more symmetric encryp-
tion keys to the user for entry into the software to decrypt
the encrypted document represented by the applicable
DocumentID.

17. The article of manufacture according to claim 16,
wherein the request for the one or more symmetric encryption
keys from the software is received via a network site which is
in communication with the software attempting to open the
encrypted document.

18. The article of manufacture according to claim 16,
wherein:

execution of the stored logic thereby causes the computer

to operate so as to also receive the applicable one or more
symmetric encryption keys from a network site which is
in communication with the software attempting to open
the document; and

the applicable one or more symmetric encryption keys

transmitted to the user interface window are the appli-
cable one or more symmetric encryption keys received
from the network site.

19. A article of manufacture according to claim 11, wherein
execution of the stored logic thereby causes the computer to
operate so as to (i) perform symmetric key cryptography
based operations, including providing a seed for token
authenticator hardware or software, (ii) receive, from the user
interface window, a request for a token seed, and at least one
of (a) a user identifier and (b) a token identifier for which the
seed is requested, (iii) generate the seed based on a one way
function, the at least one identifier, a secret known only to the
computer and other information, and (iv) transmit, to the user
interface window via the secure, independent, encrypted
communication channel, the generated seed, with explicit or
implicit instructions to either (a) present the transmitted seed
to the user on the user interface window display for entry by
the user into a seeding interface of the token or (b) enter the
transmitted seed into the seeding interface of the token
directly without user intervention.

20. A article of manufacture according to claim 19, wherein
the transmitted seed is an intermediate seed for processing by
the token software to generate the final seed.

#* #* #* #* #*

